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INTRODUCTION

The efficiency of a structure-control system is a nondimensional parameter which indicates the

fraction of the total control power expended usefully in controlling a finite-dimensional system. The

balance of control power is wasted on the truncated dynamics serving no useful purpose towards

the control objectives. Recently, it has been demonstrated that the concept of emciency can be

used to address a number of control issues encountered in the control of dynamic systems such as

the spillover effects, selection of a good input configuration and obtaining reduced order control

models. Reference (1) introduced the concept and presented analyses of several Linear Quadratic

Regulator designs on the basis of their efficiencies. Encouraged by the results of Ref. (1)_ Ref.

(2) introduces an efficiency modal analysis of a structure-control system which gives an internal

characterization of the controller design and establishes the link between the control design and

the initial disturbances to affect efficient structure-control system designs. The efficiency modal

analysis leads to identification of principal controller directions (or controller modes) distinct from

the structural natural modes. Thus ultimately, many issues of the structure-control system revolve

around the idea of insuring compatability of the structural modes and the controller modes with

each other, the better the match the higher the efficiency. A key feature in controlling a reduced

order model of a high dimensional (or oo-dimensional distributed parameter system) structural

dynamic system must be to achieve high efficiency of the control system while satisfying the control

objectives and/or constraints. Formally, this can be achieved by designing the control system and

structural parameters simultaneously within an optimization framework. The subject of this paper

is to present such a design procedure.

An important aspect of the efficiency approach to structure-control system is that the behavior

of the full-order system can be ascertained based on the reduced-order design model without any

knowledge of the truncated system dynamics. In case of finite element models (FEM) of structural

systems the full order system is the high-dimensional first-cut model of the system known as the A;_h
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order evaluation model, where N is the total finite-element model structural degrees of freedom. In

tile case of distributed parameter partial differential equation formulation, the full-order model is

lhe _c-dimensional system.

Two types of efficiency are defined for structure-control systems in Ref. 1. The first is the

global efficiency e* which compares the total control power expended on the full-order system

by a spatially discrete finite number of point inputs, to the control power that would have been

expended _o control the full-order system by a spatially continuous input field. Thus, the global

efficiency is a predominant indicator of the effect of nature of input configuration on utilizing the

available control power. The second efficiency e compares the control power lost to the

truncated dynamics thereby not serving the purpose of control to the total control power expended

on tile full-order physical system via the reduced-order control design model. In the case of global

efficiency there is an interest in the performance of a spatially distributed control design which is

dynamically similar (Ref. 3) to the point-input control design. The performance of the distributed

input design constitutes a globally optimal performance. In the case of relative model efficiency e,

both control powers compared pertain to the same control design model employing point-inputs,

hence e constitutes a relative measure of power performance. In this paper, the focus will be on

the relative model emciency. References 1, 2, and 4 include more details on the efficiency approach to

structure-control systems.

The subject of structure-control systems is inherently multidisciplinary. A variety of objectives

and constraints can be proposed both at the system-level and subsystem level (structure or control

subsystems) to bring about an interdisciplinary study of the problem. For space-structures an

ultimate objective is to have a minimum mass structure subject to structural and/or control system

constraints. References 5-8 include a variety of optimization formulations of the problem. One

aspect of structural-control system optimization seems to be the variety of objective and constraint

function formulations that are proposed. While abundance of various formulations is desirable at

one hand, many different formulations also point out the need for being able to pose objective and

constraint functions that are truly multidisciplinary and therefore can address a variety of design

issues for the structure-control system. It is here that the power efficiency of the structure-control

system as a non-dimensional indicator of the merit of the system design seems to offer a unique

potential.

In our recent work in Ref. 9, as a further enhancement of the optimization formulation pre-

sented in Ref. 10, we included alower bound on the minimum efficiency achievable under all possible

initial disturbances as a system-level constraint. Other constraints included in Refs. 9, 10 were on

closed-loop damped frequencies and damping ratios. Furthermore, the question of a reduced-order

design model was not addressed in Ref. 10. The inclusion of the efficiency constraint in Ref. 9, on
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the other hand, brought the controller reduction problem into the picture which is implicit in the

definition of the relative model efficiency. The feasibility of the optimization procedure for minimum

mass including an efficiency constraint was clearly demonstrated in Ref. 9, by several examples

using the ACOSS-FOUR structure (Fig. 1). The evaluation model had 12 degrees of freedom and

the reduced order control design model included the lowest 8 structural modes. The control law

was designed via the linear quadratic regulator theory (LQR) for apriori assumed unit weighting

parameters for the states and the control inputs. The design variables were the 12 cross-sectional

areas of the members of the structure.

From a broader perspective for the structure-control system, the design variables can and should

include control system design parameters as well as structural system design variables. To this end,

if the control law is designed via the LQR theory, the state and control weighting parameters can be

considered as additional design variables. Recently, Ref. 11 included the control and state weighting

parameters as design variables along with the member cross-sectional areas of the ACOSS-FOUR

structure for an optimization problem with robustness constraints. However, Ref. 11 used the

full-order (12 modes, 24 states) system model in its illustrations.

In view of the illustrations given in Refs. 9 and 11, the next evolution in optimization of the

structure-control system with a focus on tile efficiency of the design with a reduced-order model

is to include the control weighting parameters as design variables along with the structural design

variables. This paper represents this next step in the system optimization. Thus an optimization

problem that is not only of more practical interest but also of a more genuine interdisciplinary

character is presented in this paper.

EFFICIENCY ANALYSIS FOR A STRUCTURE-CONTROL SYSTEM

Consider an N th order FEM evaluation model of the structural system

M_ + E//+ Kq = D _F(t) (1)

where M,K and D are the mass, stiffness and input influence matrices, q(i) is the N-vector of

nodal displacements and F(t ) is the m-vector of point inputs. To control the structure described by

(1), reduced-order modal state-space equations are considered

= + B_r(t) (2)
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where qT are the n < N structural modes controlled. Hence. considering the structural modal

problem associated with (1) and denoting the orthonormalized modal matrix _ of the full order

evaluation model we have

q--q,r/ [¢fc _R][ r/_]_R (8)

where R denotes truncated structural modes. The modal-state space system of (2) is the reduced

2n th order control design-space model. The A and B matrices have the form

0,,] [0]B= (4,5)

where _z = diag [a_l .... _] with _'_ a natural frequency and 1 is the rL_a order identity matrix.

Due to any arbitrary input F(t) the control power associated with the input on the actual

full-order evaluation system (1) is given by the integral

sR __ f F-TDTM-1DFdt (6_)

The portion of this total expended power on the actual physical system that is projected onto

a reduced-order dynamic system represented by (2) is

S_ I = f FTBTBFdt (6b)

We refer to £ R as the real (total) control power expended and S_ _ as the modal control power

expended on the modal control design model. One has (Ref. 1)

s_ > sg (7)

and the control power wasted to the truncated dynamics is

s__= s _ - sg (8)

The relative model input power efficiency is defined as

× 100 (9)
SR

with a maximum possible efficiency of 100%.

Associated with e, a power spillover quotient can be defined as

s2
Sq%-- SR × 100 = (l-e) ><,100 (10)

We note tha{ while Scm is indicative of a quantity for the reduced control design model through

the appearance of the/3 matrix, S R is a quantity for the evaluation mudel through the appearance
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of the evaluation model massmatrix ill. This observation establishesthat the model efficiency

relates the power performanceof the full-order evaluation model of the actual physical system.

.Most importantly the definition of model efficiency is valid regardlessof the specific functional

dependenceof the input field F(t) which is tile physical input to the real system. For example, it

does not matter from the point of definition whether F(t) is a control input or not.

Specifically, however, if the input F(t) on the physical system has the functional form of the

state-feedback of the reduced-control design model (2) as:

_'(t) = -Gx (11)

where G is a stabilizing constant control feedback gain matrix of dimension m × 2n, then it can

be shown that S_, S R become:

sR xTeR o '= _ =xorcX_o , X_o=X(to ) (12)

P/_ and PcM are symmetric positive definite matrices referred to as real and modal control power

matrices, respectively. They are the solutions of the Lyapunov equations associated with the closed-

loop control system

T /_ +- DTM -1 (13)AdP +PRA d G DG- 0

ATDM p_1ct_C ÷ Acl - GBTBG = 0 (14)

Ad= A+BG (15)

Both power matrices are 2r__h order; they are computed based on the reduced control design

model. However, note that the real power matrix pR still inherently involves the evaluation model.

It follows that, for a stable structure-control system, the model efficiency becomes

T_M

e - -x° rC -x° (16)
xoTpR_xo

Hence, the efficiency of the system in general depends on the initial disturbance state and the

structure and control system parameters carried into the power matrices via the Lyapunov Equations

(13, 14). As simple as definition (16) of efficiency of the system appears, it does hold a host of

internal information about the working of the structure and control system thereby characterizing

the control/structure interactions uniquely as we outline below.

Since the control power matrices are Hermitian matrices, the efficiency quotient (16) essential-

ly represents a Rayleigh's quotient. Consider the eigenvalue problem associated with the power

matrices (Ref. 2)

pMtc ,=A_Pnti i= 1,2,...,2n (17)
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where A_ and ti are defined as the i t_ characteristic efficiency and tire i th controller efficiency mode.

respectively. The eigenvector ti is also referred to as the principal controller direction. Introducing

the effciency modal matrix T:

T-it] t2 ... t2_i (18)

the following orthonomalitv relations can be stated

TTpBT = I2,_×2_, TTp_IT = A _

where

A¢--diag[A_ _ ... A_,_], A_ < ...<_,_ _ 1 (20)

From the properties of a Rayleigh's quotient, for any arbitrary vector (initial disturbance state)

X.o, the value of the quotient (16) is bracketed by

(2t)

where the upper bound of 1 follows from the property (7). VVe shall refer to ,_ as the fundamental

efficiency. It is the minimum efficiency achievable by the structure-control system regardless of the

initial state a:o.

Again, since the Rayleigh's quotient is stationary around an eigenvahe 1_ it follows that if

the initial disturbance a:o = ti, that is if it matches the i th controller efficiency mode exactly, the

efficiency will be exactly A_. Next, defining an efficiency modal transformation

= +o-- T% (22)

an efficiency expansion expression can be written as

2n 2

% (28)
i--1

where ei and ei represent the i th efficiency state and the i th efficiency component, respectively.

From the above analysis, we note that the controller efficiency modal matrix T and the characteristic

efficiencies Ae are uniquely determined for a particular structure-control system design. For different

initial disturbances a:o, the resulting efficiency e can readily be computed via the efficiency expansion

of Eqs. (23). There will be no need for reanalysis of the system when the disturbance changes. The

controller efficiency modal analysis presented above and characterized by {A e, T} is unique for the

structure-control system and is in addition to the purely structural modal properties characterized

by iw 2, ¢I']. For the sake of brevity and without elaborating further, the structure and control system

analysis revolves around how compatible the modal properties _ and T are. The modal matrix T
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gives an internal characterization of the structure-control system and should prove to be a valuable

analysis/design tool (Ref. 4).

OPTIMIZATION PROBLEM FORMULATION

In the design of structural-control systems it is natural to strive for a high model efficiency

e regardless of initial state disturbances. The consequence is that. a high efficiency of an)" given

reduced-order control design model will imply that there is low control power spillover to the

truncated dynamics and hence minimized residual interaction with the design model. Furthermore,

by definition, a high efficiency simply means a more efficient use of resources available, which is

a common sense engineering design principle. \Ve can then pose a structure-control optimization

problem which incorporates the system efficiency.

Optimization Problem

Objective:

Minimize the total structural weight

subject to

Constraints oil the reduced-order control design modeh

(24)

_i min _ _; (25a)

e% k e*% (25c)

Control System Design Performance Index (CDPI):

oo

l/(x_T x + fTRf)dtCDPI = Minimize: _ _ _ _
O

(26)

where Q >_ O, R > O are weighting matrices defined by

=SQ, _=TR (27a,b)

where Q and R are specified constant matrices and 5 and 3' are the control system design variables.

Design Variables: {Structural design variables, _, 5}
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in (25), i denotes a chosen set of modes from a set of rt modes in the design space. (i is the

damping ratio of the controlled system and aai is the closed-loop frequency. An * denotes minimum

desirable constraint values. The minimum weight optimization problem using only the first two

types of constraints has been studied in Ref. (10). The novel feature of the problem posed here is

the inclusion of the nondimensional structure control system parameter, the efficiency e in addition

to the already too familiar other nondimensional parameter, the damping ratio £. The constraint

on ( reflects a concern on the quality of response, whereas the constraint on e reflects a concern on

the use of t.he control power. An equally important feature of this optimization formulation is that

the goodness of the reduced order design model relative to the full order system is explicitly but

intricately incorporated to the design via the introduction of the efficiency constraint.

Returning to the efficiency constraint (25c) and the definition of efficiency (16) it is certain that

the solution of the problem will also be sensitive to the initial modal state disturbance which is

affected by the structural design variables. To circumvent this dependence of the problem solution

on Xo we invoke a feature noted in the previous section that the minimum efficiency achievable is

the fundamental efficiency _ regardless of the initial disturbance. Hence, the efficiency constraint

(25c) can be subslituted by a constraint on the fundamental efficiency

> (2sd)

guaranteeing a lower bound on the model efficiency regardless of initial disturbances where sensi-

tivity of )_ depends only on the system matrices via the efficiency eigenvalue problem (17). Hence,

we solve the optimization problem subject to the constraints (25a), (25b) and (25d).

The sensitivity expressions for the objective function and the damping ratio ( and the closed-

loop frequencies w'i are exactly the same as given in Ref. (10) where it is assumed that the control

gain matrix G is the steady-state solution of the 2n Ch order matrix Riccati equation associated with

the minimization of the Control Design Performance Index (CDP]). The sensitivity expression of

efficiency A{ is given in Ref. 9. The sensitivities with respect to the control design variables are

given in Ref. (11).

ILLUSTRATIVE EXAMPLES

The ACOSS-FOUR structure shown in Fig. 1 was used to design a minimum weight structure

with constraints on the closed-loop eigenvalues and the fundamental efficiency. This structure has

twelve degrees of freedom (N = 12) and four masses of two units each attached at nodes l through 4.

The dimensions and the elastic properties of the structure are specified in consistent nondimensional

units in Ref. (7). Six colocated actuators and sensors are in six bipods. The control approach used

is the linear quadratic regulator with steady-state gain feedback via minimizing the control design
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performance index, (Eqs. 26, 27). In Eqs. 27, the weighting matrices Q and R for the state and

control variables were assumed to be equal to the identity matrices and the parameters 8 and _/

were used as design variables along with the 12 structural member cross-sectional areas.

The nominal initial design is denoted by Design A with cross-sectional areas of the members

equal to those given in Table 1. This initial design weighs 43.69 units. The initial values for the

control parameters 8 and 3' were chosen as unity.

The constraints imposed on the optimum designs were as follows:

_1 _ 1.425 (28a)

w2 > 1.757

_ > 1.5 £1(initial)

,_1 = e_i_ >_ 1.75 Al(initial) = 1.75 e,_i_(initial)

(2sv)

(2so)

(2s )

The first two constraints oi1 the closed-loop damped frequencies correspond to a 10% increase

over the initial closed-loop damped frequencies which were practically equal to the corresponding

structural natural frequencies. The damping constraint demands a 50% increase in the damping

of the first mode over that of the initial design. The fundamental efficiency constraint, which is

the minimum possible efficiency (the worst case) for all conceivable initial state disturbances _'o,

requires a 75% increase over the minimum efficiency of the initial design. We should note that the

designation with subscript "1" in this constraint has no connotation with the first structural mode,

quite differently it refers to the first efficiency mode or first principal controller mode, the significance

of which is brought about through the definition of concept of efficiency of the structure-control

system.

The NEWSUMT-A software based on the extended interior penalty function method with

Newton's method of unconstrained minimization (Ref. 12) was used to obtain optimum designs.

Two optimization problems were solved each with a different reduced-order control design model

and a different input configuration. These designs were denoted as Design B and Design C. Design

B used the first eight natural structural modes in the reduced-order control design model (r_ = 8)

with 6 inputs (m = 6) located on the six bipods of the structure. Design C used the first six natural

structural modes in the reduced order control design model (r_ = 6) with 2 inputs (m = 2) located

on the two bipods attached to node 2.

The results of optimizations are given in Table 2 which includes values obtained for the con-

strained quantities aJl,_o2, A_ and £1 and the objective functions, weights of the structures. In

addition, the resulting real control powers expended, S R and the amount of this power that was

absorbed by the reduced-order design models, S M and the respective model efficiencies, e% are
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listed in Table 2. As the initial disturbance state Xo, a unit displacement in the x-direction at node

2 was assumed. Note that the initial disturbance affects only the value of model efficiency e, but

not the value of the fundamental efficiency A_.

The design variables, cross-sectional areas of elements and the control weighting parameters

are listed in Table 1 for all Designs A-C. The structural frequencies, the characteristic controller

power efficiency spectrum and tile damping ratios of the closed-loop designs are also listed in Tables

3-5, respectively.

It is observed from Table 2 that all optimum designs result in considerable weight reduction

in comparison to the initial weight and the constraints are satisfied. Particularly, fundamental

effciencies of optimum designs have been increased resulting in significant improvements also in the

model efficiencies as intended. From Table 2 we note that the total control powers S R expended on

the 12 th order evaluation models have been affected with larger percentages of them absorbed by the

8th and 6th-order control design models of the optimum designs. While the control design models

of the optimum designs have higher structural frequencies than the initial design, the truncated

frequencies have been lowered, thus making the response of the truncated dynamics more susceptible

to excitation by the control powers spilled over inefficiently in the optimum design. Thus it becomes

even of more concern that tile optimum designs have higher efficiencies than the initial design. For

both control design models this has been achieved.

The control power S_ -r absorbed by a design model increases with the cube of the structural

frequencies and may increase or decrease with the damping ratios depending on the separation

between the closed-loop natural frequencies (modul] of the closed-loop eigenvalues) and the open-

loop structural natural frequencies (Ref. 13). Therefore, the increases in the control powers S_ _

absorbed by both of the optimum designs are expected. From an alternate perspective, the initial

strain energies in the design models of the optimum designs B and C are higher than the initial

design A for the assumed unit initial displacement at node 2. However, much higher damping ratios

realized in the optimum designs as listed in Table 5 by virtue of the required increase in the damping

ratio of the fundamental structural mode, result in considerable decrease in the settling time of the

closed-loop system. Thus, from this perspective also, power absorbed by the optimum designs 5"_-f

must increase to remove higher levels of initial strain energy in a much shorter time. Again note

that the optimum designs have higher levels of efficiencies in using the control powers.

The line-of-sight error responses at node 1 of both optimum designs for the evaluation models

and the control design models are shown in Figures 2 and 3 for (n = 6,m = 2) and (n = 8,m = 6),

respectively. Figure 2a shows the responses of the ]2-mode evaluation models of the initial design

(Design A - solid curve) and the optimum design (Design C - dashed curve) for the control design

model of 6 lowest natural modes and 2 inputs. Design C has an efficiency of 95.1% versus the 53.6%
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efficiency of the initial Design A. Figure 2b shows the responses of the 12-mode evaluation model

(solid curve) and the 6-mode control design model (dashed curve) of optimum Design C. Similarly,

for the control design model of 8 lowest natural modes and 6 inputs, Figure 3a shows the responses

of the 12-mode evaluation models of the initial design (Design A - solid curve) and the optimum

design (Design B - dashed curve) with respective efficiencies of 61.5% and 88.6%. Figure 3b shows

the responses of the 12-mode evaluation model (solid curve) and the 8-mode control design model

(dashed curve) of optimum Design B.

The relative model efficiency e is a figure of merit which can also be used to ascertain the quality

of response of the evaluation model of a controlled structure based on the study and simulation

of a reduced-order control design model without any need for simulation of the evaluation model

which can be very taxing on computational resources. It is shown in Ref. 4 that the mean square

response of truncated dynamics is inversely proportional to the fourth power of the truncated

natural frequencies and directly proportional to the time-weighted control power spilled over to the

truncated dynamics which is quantified by the spillover quotient-inefficiency defined by Eq. (10).

Certainly, if the controlled frequencies and the truncated frequencies are well-separated, specifically,

if the truncated frequencies are high frequencies and a high system efficiency is realized, then one

would hardly expect any degradation of the response of the reduced-order control design model due

to excitation of truncated dynamics. In other words, in such cases, the inefficiency figure would

further be attenuated when it is translated to its effect on the system response. In contrast, if the

truncated frequencies are not well-separated from the controlled frequencies and they are of low

natural frequencies, then the inefficiency figure will further be magnified when it is correlated to the

system response. In case of such low frequencies in the truncated dynamics it becomes even of more

concern to obtain very high system efficiencies. With efficiency of the system obtained based on the

reduced-order design model and its implications on the evaluation model response known apriori

through such observations, the designer will not have to simulate the evaluation model. Due to

such aspects of the structure-control system, consideration of the efficiency of the system becomes

essential for the designer. Furthermore, even if the effect of truncated dynamics on the response is

ascertained to be insignificant, still striving for higher efficiency to conserve control power makes

sound design engineering.

As for the optimum designs B and C illustrated in this paper, from Table 3 it is noted that the

first truncated frequencies, mode 9 for Design B and mode 7 for Design C are almost coincident

with the highest controlled frequencies, modes 8 and 6, respectively. Thus although the highest

controlled frequencies and the first truncated frequencies are clearly separated in the initial Designs

A, in the optimum designs, this feature is lost. In spite of the higher efficiencies obtained for the

optimum Designs B and C one may expect that the near resonance excitation of the truncated mode

7 for Design C and the truncated mode 9 for Design B by the 6 th and 8 th modes, respectively, wilt
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be discernible in the evaluation model responses over the responses of the reduced control design

models. This is clearly verified in the evaluation model responses, especially in Fig. 2b, in spite

of the 95% efiqciency' obtained for the optimum design. One may seek to improve the situation by

either attempting a higher efficiency design or by putting a frequency separation constraint between

the control design model and the truncated frequencies.

Finally, some remarks are in order as to the choice of different input configurations for the two

optimum designs B and C. As discussed in Ref. 1, efficiency is a genuine parameter that reflects

the interdisciplinary nature of the structure-control system design. As such it is also an indicator

of the effects of changes in the input configuration and the design model order as well as of the

comparability of the particular input configuration with the reduced-order design model. Indeed,

it is illustrated in Ref. 1 that for the initial Design A with the 6-mode design model inclusion

of inputs 3-6 degrades the efficiency of the system, whereas their inclusion improves the efficiencv

of the system for the 8-mode design model. Thus, for the optimization problems formulated and

illustrated in this paper with the objective of improving the efficiencies of the 8-mode and 6-mode

reduced-order designs, from the study of efficiencies of the initial design A, the input configurations

were chosen with 6 inputs and the first 2 inputs, respectively, culminating in satisfaction of our

objectives for both designs.

CONCLUSIONS

Incorporation of the efficiency concept as a norm of the structure-control system design and

analysis enhances the overall quality of the system. Structure-Control system efficiency is a physi-

cally based nondimensional parameter indicating the degree of usefulness of a fundamental quantity

in the design and analysis of many engineering disciplines, namely, the power. Our work hereto-

fore demonstrates that a focus on the system efficiency does not curtail the designer's ability in

monitoring other important quantities of the overall design; on the contrary, it brings in an added,

but necessary, dimension to the structure-control system which is a time-tested proven concept in

engineering design. The improvement of efficiency, in the least, simply makes better use of available

control power since it results in reduced power spillover to the unmodelled dynamics. Furthermore,

this reduction is not merely qualitative but it is quantified via efficiency. Consequently, monitoring

of efficiency of the system is tantamount to gauging the goodness of any reduced-order control design

model relative to the full-order physical system, which is characterized typically by a higher-order

evaluation model in tile case of FEM models or the oc-dimensional model in _.he case of distributed

parameter systems. More importantly, all control design computations only involve the reduced-

order control design model while extracting information about the behavior of the full-order system

which makes efficiency a practical design tool for the structure-control engineer. Our work
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demonstrates that efficiency is an essential feature that must be addressedin the designof

structure-control systemsfor flexible systems.
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Table i: Design Variables

Element Design A Design B Design C

Number n = 8, m = 6 n = 6, m = 2

1

2

3

4

5

6

7

8

9

I0

ii

12

i000.0

i000.0

I00.0

I00.0

i000.0

i000.0

i00.0

i00.0

100.0

i00.0

i00.0

i00.0

246.9

403.6

175.4

257.2

228.2

253.9

54.2

226.1

224.6

528.2

604.9

597.4

126.5

280.7

575.5

576.2

407.9

271.1

84.7

68.2

547.8

171.8

416.2

270.8

Weight 43.69 21.97 26.79

1.00 4.24 2.45

y 1.00 0.24 0.41
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Table 2: Optimum Designs

Constraints

1

°2

C1

11%

S R

M

SC

e%

Weight

Design A

Initial Design

n = 8, 6

1.295

1.596

Design B

n = 8 modes

m = 6 inputs

1.425

0.056, 0.031

40.7, 52.5

4.88, 17.88

3.00, 9.59

61.5, 53.6

43.69

1.757

0.290

71.2

89.00

78.91

88.6

21.97

Design C

n = 6 modes

m = 2 inputs

1.425

1.757

0.130

92.1

26.02

24.74

95.1

26.79

Table 3 • Structural
2

Frequencies
S

Structural

Mode

1

2

3

4

5

6

7

8

9

I0

Ii

12

Design A

1.68

2.55

7.31

7.52

9.98

16.06

20.01

20.17

66.24

77.46

97.42

151.30

Design B

n = 8, m = 6

2.11

3.27

7.83

11.17

17.34

22.80

44.61

50.40

50.52

96.96

107.40

110.70

n

Design C

= 6, m = 2

2.06

3.15

8.43

13.85

19.27

24.17

24.43

43.32

55.84

70.42

92.49

112.86
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Table 4: Characteristic Efficiency Spectrum 1% } %

Controller Design A Design B Design C

Efficiency Mode n = 8, 6 n = 8, m = 6 n = 6, m = 2

1

2

3

4

5

6

7

8

9

I0

ii

12

13

14

15

16

99.98, 59.95

99.98, 59.95

99.62, 59.95

99.57, 59.95

98.32, 59.95

98.10, 59.95

76.90, 52.65

76.21, 52.65

62.92, 52.65

61.98, 52.65

56.92, 52.65

53.29, 52.65

42.87,

42.81,

42.77,

40.77,

99.89

99.82

99.22

98.56

94.01

93.78

92.88

91.99

89.57

88.51

81.21

78.98

76.88

74.14

72.63

71.24

97.85

97.85

97.83

97.83

97.77

97.73

92.24

92.23

92.16

92.14

92.14

92.14

Table 5: Closed-Loop Damping Ratios

Mode

1

2

3

4

5

6

7

8

Design A

n = 8, 6

0.056, 0.031

0.067, 0.034

0.074, 0.009

0.081, 0.063

0.085, 0.077

0.087, 0.049

0.076,

0.072,

Design B

n = 8, m = 6

0.290

0.107

0.335

0.106

0.i00

0.189

0.205

0.196

n

Design C

= 6, m =

0. 130

0.171

0.121

0.120

0.160

0.124
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Figure i: Tetrahedral ACOSS-FOUR structure

(actuator numbers are in parentheses)
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Figure 2a: Line-of-sight error evaluation model responses for
the 6 th order control design model; initial design A (solid)

and optimum design C (dashed)
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Figure 2b: Line-of-sight error responses of the evaluation
model (solid) and 6th order control design model (dashed)

for optimum design C
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Figure 3a: Line-of-sight error evaluation model responses for

the 8 th order control design model; initial design A (solid)

and optimum design B (dashed)
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Figure 3b: Line-of-sight error responses of the evaluation

model (dashed) and 8 th order control design model (solid)

for optimum design B
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